
MODEL FOR CALCULATING THE THERMAL CONDUCTIVITY OF SOILS WITH THEIR 

GENESIS TAKEN INTO ACCOUNT 

R. I. Gavril'ev UDC 624.131 

The article suggests a model in which the solid component is represented in the 
form of three mutually intersecting ellipsoids of revolution in a cubic cell; 
this ensures the variable shape of particles in the entire range of changes of 
porosity of the system. 

Soils are the products of decay of rocks as a result of lengthy physical and chemical 
weathering. Soils are genetically subdivided into eluvial, diluvial, alluvial, morainic, 
aqueous-glacial, lacustrine, and eolian soils. During the process of length conversion the 
shape of the particles undergoes substantial changes. In eluvial and deluvial deposits soil 
particles usually have angular shape. In alluvial deposits the particles are rounded off 
as a result of being transported by flowing water, and the soils are therefore usually com- 
posed of particles with a round shape. Clayey particles are formed mainly by chemical 
weathering of mineral particles, and they have a complex configuration with uneven, often 
corroded (pitted) surfaces, predominant in them are particles with irregular angular shape 
(acicular, star-shaped, clustered, chiplike). 

Therefore, when a model is worked out for calculating the thermal conductivity of soils 
of different genesis, the change of shape of the particles has to be taken into account 
over the entire range of changes of porosity: from 0 to i; this makes it possible to examine 
the entire cycle of conversion of primary material. 

We know of many procedures and models for calculating the thermal conductivity of granu- 
lar materials; their detailed review is presented in [1-4]. Most authors regard the shape 
of the particles as unchanging, usually in the form of spheres, and porosity changes within 
a limited range, from 0.26 to I, with their different disposition in the elementary cell 
[5-11]. The full range of changes of porosity (0 ~ m 2 ~ i) is attained in models with con- 
stantly contacting particles with variable shape, e.g., in the form of paraboloids of revolu- 
tion [12] or bars with or without contact necks in a model with interpenetrating ellipsoids 
[13-15]. Zarichnyak [2] suggested a polystructural model in which the granular material 
is represented by a "carcass" formed by the ordered disposition of spherical particles with 
their closest packing (structure of first order) and a spatial network of large cavities 
piercing the carcass and forming with the particle a structure of second order with inter- 
penetrating continuous components. 

This model was latter improved by Dul'nev and Zarichnyak together with Eremeev [4] 
by replacing the ordered disposition of particles in the carcass by stochastic disposition 
with an averaged element which is a stream tube through the near-contact region (on the 
basis of the assumption that the thermal conductivity of the particles is incomparably greater 
than the thermal conductivity of the component in the pores). As a result it became possible 
to use the model in the entire range of changes of porosityof the granular system: from 
0 to I. However, replacing the entire section of particles by a narrow near-contact cylindrical 
region, with commensurable values of thermal conductivity of the mineral particles and of 
the pore component, e.g., in frozen soils, may entail some systematic errors of the calcu- 
lations, mainly toward exaggeratedly large effective thermal conductivity of the system. Taking 
this circumstance into account and tracing the real pattern of decay of rocks and conversion 
of the shape of particles in the course of the length process of diagenesis, we suggest 
a model in which the solid component in the cubic cell is represented by three interpenetrating 
ellipsoids of revolution. With this arrangement, in dependence on the ratio of the semiaxes 
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Fig. i. Diagram for calculating QI (a), QII 
(b), Qt.e (c), and Qc for a/E ~ i. 

of the ellipsoids a/R, the porosity of the system changes from 0 to i, and the particles 
assume variegated shapes: cubic, angular, spherical, pitted, and angular cross-like; this 
illustrates perfectly logically the real change of shape of mineral particles in nhe process 
of genesis of deposits, i.e., the main demand on the model is fulfilled, viz., that it 
is an adequate picture of the real system. With the arrangement under consideration the 
particles always maintain contact with each other, and the system remains permanently stable 
and isotropic. The coordination number is constant, equal to 6, and the dependence of the 
thermal conductivity of the system on its porosity is effected by the change of shape of 
the particles with different ratios of the dimensions of the ellipsoids of revolution. In 
the polystructural model this dependence is connected with inconstancy of the coordination 
number of the particles with different close packing, which for spherical particles is 
physically more realistic. However, for the purpose of taking the genesis of soils into 
account, we specially chose the model with variable shape of the particles, but we suggest 
it only as one of the possible alternatives of the model representation of the structure 
of granular materials. 

Let us consider the calculation schema of the suggested structure. Here two cases 
are possible: a/R ~ i and a/R > i. 

A. The Case When a/R ! i (Fig. i). 

To calculate the heat flux in the investigated structure, we distinguish three regions: 
I, a cylinder with radius a in which an elongated ellipsoid of revolution with radius of 
the base a is inscribed; II, the region that includes the lateral spurs of two transverse 
ellipsoids of revolution; III, the remaining part of a cube occupied solely by the filler 
of the pores. 

The total heat flux through the cubic cell Q is equal to the sum of the heat fluxes 
through the enumerated regions: 

Q = Q, + QH + Qm. (1)  

In the calculations we adopt the following assumptions: 

i. The streamlines on the interfaces between the solid component and the medium do 
not curve. 

2. The isothermal surfaces are planes passing through the center and the upper side 
of the cube perpendicularly to the line of heat flow. Between these surfaces a constant 
temperature gradient At = t 2 - t z is specified. 

Let us consider each region separately. 

Region I (0 ~ x ~ a) (Fig. la). The amount of heat transmitted through an annular 
element with width dx is equal to 
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Fig. 2. Diagram of the distribution of heat fluxes of the 
model for a/R Z i: a) view from top; b) section along the 
diagonal (81 = r 7 ~2; ~2 = ~2R). 

dQi = 
At AidS 
f~ 6x~ + 6& ' (2) 

6x~ + 6x2 / 
where Q x = (  ~* - ~ z  J dS 

sectional area dS. 

It follows from Fig. la that 6x I = y, 6x a = R - y and dS = 2~xdx. 
between y and x is found from the equation of the ellipse 

x 2 yZ 
- - +  =1 .  

a 2 ~2 

Hence y = R/a~a 2 - x ~. 

I is the thermal resistance of an annular element with cross- 

The correlation 

(]) 

In view of this relation we obtain 

R (a - -  k ] / ~  - -  x2) 
Qx = 2 ~ a x d x  

where k = 1 - A2/h ~. 

Integrating the expression dQ I ht/~ x from 0 to a, we find 

(~) 

R o a--ka~]~g----~ 2 kR 

Region II (Fig. ib). To evaluate the heat flux QII we first calculate the flux Ot.e 

through the entire transverse ellipsoid of revolution. Then we subtract from it the heat 
flux Qc passing through the cylinder with radius a in which the solid component is contained 
in the form of the barrel A. 

Let us consider in Fig. ic the section of the region in which the solid component is 
contained in the form of a transverse ellipsoid of revolution. 

The following is the initial equation: 

ga + x 2 . . . .  1. ( 6 )  
a2 ~2 

From that, taking the relation dS = 2~xadx/R into account, we find 

R ~ -- a k - V - R  ~ - -  x2 

P'~ = 2a~,~axdx 
(7) 

70 



t2 

t 7 

Fig. 3. 

I f 

b 

L9 9 

R dx "h % 
X ]  I 

0 z x 1 x ~1 O 

a 

I Qm e-sTl 

Diagram for the calculation of QI (a), QII 
(b), and QIII (c) for a/R >_ i. 

dx 

I 

When we integrate expression (2) from 0 to R, we finally obtain the heat flux through 
the region with the solid component in the shape of a transverse ellipsoid of revolution: 

2~AtX~R ( ~ l n ]  1 / _ _ 1 ) .  (8)  
Qt.e= k 1 --ah/R 

The h e a t  f l u x  t h r o u g h  a c y l i n d e r  w i t h  r a d i u s  a c o n t a i n i n g  t h e  s o l i d  component  in  t h e  
shape  o f  t h e  l e t t e r  A, formed by t h e  i n t e r s e c t i o n  o f  a l o n g i t u d i n a l  and two t r a n s v e r s e  e l -  
l i p s o i d s  of  r e v o l u t i o n ,  can be r e p r e s e n t e d  as a sy s t em of  two f l u x e s  t h r o u g h  a c y l i n d e r  
w i t h  t h e  r a d i u s  x x = aR/(a ~ + R 2 ( r e g i o n  I ' )  and a c y l i n d r i c a l  r i n g  w i t h  w a l l  t h i c k n e s s  
a - x 1 ( r e g i o n  I I ' )  ( F i g .  l d ) .  

In  t h e  r e g i o n  I '  (0 g x ~ x z) r e l a t i o n s  (6)  a r e  obeyed ,  and dS = 2vxdx. T h e r e f o r e ,  

Q~ = (R z - -  ak V R ~ --  xi)/2~R~ixdx. ( 9 ) 

Integration of expression dQ I' = at/~ x from 0 to x I, with the relations written above 
taken into account, yields 

QI" = 2~gihtR 2 [ R 
ak ~ ~ + R ~ 

1 +  ~--k 1hi 1 - -  ak/-[/a-2+l - -  ak/R Rz ]" 
(lo) 

In region II' (x 1 ~ x ~ a) relations (3) and (4) apply. 

Integrating the expression dQii, = at/g x from x I to a, we obtain 

Q11"-2~htaik2 [ _--~1 lnl 1 . a ] (11)  
kR L ~  J I - -  a ~ / ~  l/a~+ R 2 ] " 

Thus, the heat flux through the cylindrical region with radius a is equal to 

Qe = Qv + Q"" - 2aht~'~~ [ (  R ~ k  a Ra:* )/-V~az+. R i - - R i / a +  

R~ ,n 1--_ak/a~V-~-~ a~ l 1 ] + ka 2 1--ak/R + - - ~ I n  1 - - a k / ~  (1.2) 
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The heat flux through the region that includes the lateral spurs of one transverse 
ellipsoid of revolution is equal to Qs = Qt.e - Qc" 

The heat flux Qs relates to the area S~. s of the base of the lateral spurs of one 
transverse ellipsoid of revolution. When there are two mutually intersecting transverse 
ellipsoids of revolution, there is a common area of superposition which has to be taken 
into account in the calculation of the heat flux. 

The area of the base of the lateral spurs of two transverse ellipsoids of revolution 
is divided equally by the diagonals of the square. We denote by Sg this area of one lateral 
ellipsoid of revolution. Then the heat flux through region II that includes the lateral 
spurs of two intersecting transverse ellipsoids of revolution can be expressed as QII = 
2Q~.sSg/S~. s. The area S~. s is equal to mar - ~a a. 

It can be shown that 

Sg = ~aR - -  rm'~/2 - -  2aR arc sin (a/l/ a z + R':'). ( 13 ) 

Taking formulas (8) and (12) into account, we obtain finally for the heat flux through 
region II : 

4~At%.zR [ R (1- -  a ) ( 1 - -  R In I 1 ) 
Q11 = k [ a R ka l - - a k / R  - -  

R ( 1 - a  R' a~ / [  (1/1/1 a 2 / R 2 ) + ~ R  l n l - - ' k ; - /  a2/R2]} 1 -6 "V'I + • 
(14) 

• 4arcsin(a/R]/1 §  
2rl (1 -- a/R) 

The area occupied by the filler in the base of the ellipsoids is equal Region III. 
tO 

Then 

S m  = 4R 2 - -  2rraR + 4aR arc sin ( a / V ~  + Rz). (15) 

Qm -- )~,AtSm __- )~A__~t [4R2 _ 2aaR § 4aR arc sin (a/]/'~ + R2)]. ( 16 ) 
R R 

From the found expressions for QI, QII, and QIII we can calculate the resulting heat 
flux Q by formula (i). On the other hand, it is equal to 4%AtR (here ~ is the effective 
thermal conductivity of the entire system). 

For the thermal conductivity of the system in the region a/R ~ 1 we finally obtain 
from these relations: 

{oI (l ~ i ) 
= ~ k [ a -R  ak 1 - - ak / R  

R 1 - -  R ~ l / l + a ~ / R  ~ - - ~ 1  1 �9 • a R ]/1 + a2/R~ 

X [1 4arcsin(a/R ] / 1 +  a2/Rz)--na/R ] ~a 
2n (1 -- a/R) + 1 2R 

2kR 2 -7 -1n l l - -k l+  1 + R R-I/'I +a~/R i " 
(17) 

B. The Case When a/R ~ i. 

To calculate the heat flux, we divide the system into four regions (Fig. 2). We repre- 
sent the central part of the figure in Fig. 2 (region I) by a cylinder with radius x I = 
aR]~a 2 + R 2'. Region II is a cylindrical ring with inner and outer radii equal to x I and 
R, respectively. Region Ill consists of spurs of the solid component in the diagonal direc- 
tions of the section. Region IV is filled with the medium. 

Let us consider each region separately. 
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Region I (0 5 x < xl) (Fig. 3a). From above the solid component is bounded by part 
of the solid ellipsoid of revolution around the Oy-axis. At that relations (3) and (4) 
are fulfilled. 

Integrating dQ I = At/~ x from 0 to x~, we obtain 

Qs - -  kR In �9 1--  ~ ]/a_g+ R 2 1 . 

Region II (x~ ~ x ~ R) (Fig. 3b). The interface between the solid component and the 
medium is described by Eq. (6), and the thermal resistance by formula (9). We integrate 
the relation dQii = At/~ x with respect to x from xl to R. Then we obtain 

( 1 8 )  

ate 1 - -  akl-t/a~---~R z +  I -I/-~ + R 2 , "  (19) 

Region III (Fig. 3c). It contains the angular projections of the solid component in the 
cube. For convenience of the calculation we rectify the sloping projections and take the 
height equal to Yl = aR//a2 + R2, thereby the reduction of height is compensated to some 
extent by the slope of the rib Y2. As the area of the element we adopt the area of its base 

Sill. 

Then we obtain 

~ _ 1 [ y, R - -  y~ I R ( 1  ~ akl-I/~-+-t? 2 )  

SII!  L ~ -@ g2 = g2SIII 

where Si11 = S b -- vR 2 = 4aRarcsin(R/~a 2 + R 2) - ~R2; Sb is the area of the base of the 
solid component. 

Thus: 

Qm - -  ~At [4aR arc sin (RI-I/~ + R a) - -  aR a] 

R(1 - -  akl]/Eg + R~) 

(20) 

(21) 

Region IV. 

Ssv = 4R ~ - -  S b ,  Osv - ~,=AtSsv = 4~,oAt [R - -  a arc sin (RI-t/~ + R2)]. 
R (22) 

The total heat flux is equal to the sum of the fluxes QI, QII, QIII, and QIV" On the 
other hand we have Q = 4XAtR. Hence we finally obtain for the effective thermal conductivity 
of the model: 

4 
(+  ) : aaz ln l l - -  k l +  1 + ~ /7 ~ 

2kR 2 

R 2 \ \ 1  

/ ( ' - ~ - i n l l -  k/I/1 -l-i RZ/a ~' -I- 
i r e  

111/1 + R~la z) + ie [ a arcs in (R /a] /1  + R~./a2)---a-Ti l .  (23) 
( ] / 1  + Rata2 - -  k) t_ 77 4 J )  

In the found formulas (17) and (23) there appears the ratio of the semi-axes of the 
ellipsoids of revolution a/R which is a single-valued function of the porosity m 2 or of 
the rleative volume of the solid component m I. The correlation between m I and a/R is found 
in the following form: 

for a/R ~ 1 

~a2 I - -  R I - -  + 1 -k 
m , - -  6R = a R 2 - I / l + a a / R  = l + a Z / R Z  -']- ' (24) 

for a/R ~ 1 
aaZ [1 1--t~a/a ~' ] 2-FRZ/aZ ( 1 

/ n  1 - -  - } -  
6R a L Y 1 Jr- Ra/a z 16 (1 § R=/a z) 1/1 -+. R=/a "- 

, )[4a ] - -  arc sin (R/a -I/1 -I- RZ/a 2) st . 
+ -[/1 + 2 R Z / a  a R 

+ 
( 2 5 )  
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Fig.  4. Dependence of  the thermal  
conductivity [W/(m'K)] of dry soils on 
porosity m2: calculation (solid lines): 
i) after Maxwell and Odelevskii [18]; 
2) after Kaganer [ii]; 3) by formula 
(30); 4) after Dul'nev and Sigalova [8]; 
5) after Bogomolov [5]; 6) after Lyalikov 
[7]; 7) after Dul'nev and Zarichnyak 
[4]; experimental data: i) after Bogo- 
molov [5]; 2) after Chudnovskii [i]; 3) 
after Kam/nerer [16]; 4) after Kaufman 
[16]; dashed line) experimental curve 
[17]. 

We investigate the obtained formulas in the limit cases. 

i. Let a/R = 0. Then m I = 0, m 2 = 1 and h = i 2 . 

2. Let a/R + ~. Then m I = i, m 2 = 0 and h = i I . 

3. Let k = 0, i.e., A I = h 2. Then for any m I i = i I . 

4. Let k = i, i.e., i 2 = 0. Then for any m I h = h 2 = 0. 

5. Let a/R = i, i.e., we have a sphere. Then m I = v/6 and h = 12{(~/2k).[k-11n[i/ 
(i - k)]f- I] + 1 - 7/4}. 

It can be seen that the suggested formulas for calculating thermal conductivity operate 
normally on limit transitions. 

Before we directly begin the calculations, we stipulate the following. Formulas (17) 
and (23) were obtained with division of the elementary cell by an adiabatic surface parallel 
to the heat flux. At the same time Dul'nev and Zarichnyak [4] proved that adiabatic divis- 
ion yields excessively low thermal conductivity of the system (had), and isothermal division 
yields an exaggerated value (his). in calculations we therefore have to take the mean value 
of 1:1 = (had + his)/2. This relation can be represented in the form i = (i + At/had)lad 
(here 41 = ~- hag). Obviously, for m 2 = 0, m 2 = i, and 11 = i 2 we have 5h = 0. The maximal 
differences kh are attained in the central region of change of porosity m2, of the order 
0.2-0.5, and for 12 = 0 [4]. Proceeding from these considerations, we can represent the 
correction factor B = &h/lad in general form by the following approximate relation: 

B = B m a x s i n a m  2, (26)  

where 0 ~ m 2 ~ i; Bma x = (bh)max/had. 

The parameter Bma x depends on the ratio of the thermal conductivity of the components: 
v = 12/l I. The nature of this dependence is determined by the geometry of the model. For 
our model we recommendthe following relation: 

Bmax = 1,3 - - 1 ,  (27)  
l + 0 , 5 6 v ' O , 2 6 v  = 

where 0 ~ v ~ I. 
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Therefore, the final calculations of % have to be carried out by the following formula: 

= (1 +- Bm~ x sin am2) ~ad, (28)  

where had are the values of % calculated by formulas (17) and (23). 

Figure 4 presents the results of calculations of the thermal conductivity of dry soils 
by different formulas. For the sake of comparison the figure also shows the experimental 
data of [i, 5, 16, 17]. It should be noted that in consequence of the great differences 
between the thermophysical parameters of mineral particles and air, dry soils have the poor- 
est conditions for comparing the theoretical formulas. In the calculations we adopted the 
following values of i [W/(m.K)]: 0.025 for air and 6.0 for the mineral particles of quartz 
sand. 

It can be seen that the formula by Odeievskii [18] (particles with cubic shape) and 
Maxwell (spherical particles) (curve I) yields data that are too low; this follows from 
the very structure of the model in which heat transfer between is effected obligatorily 
through the atmospheric air. 

With porosity smaller than 0.4, Kaganer's formula [ii] (curve 2) begins to yield values 
of % that are too low because, as Kaganer believes, with m 2 < 0.414 the heat flux through 
the pores becomes negative. 

Lyalikov's formula [7] (curve 6) yields distinctly exaggerated data because the model 
assumes that particles move apart in one direction only, viz., horizontally, i.e., with 
any porosity of the system the contacts between particles are maintained. 

Satisfactory agreement with the experimental data is attained in calculations by the 
formulas of Bogomolov [5] (curve 4), Dul'nev and Sigalova [8] (curve 5), Dul'nev and Zarich- 
nyak [4] (curve 7), and (30) of the present work (curve 3). It should be noted that the 
models in [5] and [8] were constructed with the closest packing of spherical particles (tetra- 
hedral and hexagonal disposition of the particles), and for m 2 ~ 0.26% it tends to infinity. 
In fact, Fig. 4 shows that near m 2 = 0.26 curves 4 and 5 begin to rise steeply. 

A logically more correct dependence of %c on m 2 in the entire range of change of porosity 
of granular materials (0 ~ m 2 ~ i) is obtained by the formulas of Dul'nev's and Zarichnyak's 
model [4] (curve 7) and the models suggested by us (curve 3). Both models ensure very close 
correspondence of the results of calculating %c (the differences do not exceed 5%) with which 
our experimental data [17] for dry soils (sand, sandy loam, and loam) and Kaufman's data 
[16] for fine-grained materials of brick and limestone almost coincide. 

In conclusion, we note that the proposed model is also suitable for calculating the 
thermal conductivity of snow cover because there the pattern of the change of structure 
in diagenesis is similar (only in reversed order). 

NOTATION 

Q, heat flux through the surface area S; t, temperature; ~, thermal reistance; A, 
thermal conductivity; V, volume; m, volume content of soil components; x and y, coordinates; 
a and R, minor and major semi-axes of ellipsoids of revolution, respectively. Subscripts: 
i, solid soil component; 2, pore filler of the soil. 
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RADIATIVE-CONVECTIVE HEAT TRANSFER IN A SYSTEM OF TWO POROUS PLATES 

S. A. Zhdanok, V. V. Martynenko, 
and S. I. Shabunya 

UDC 536.3 

The solution to a system of equations is investigated, which describe the process 
of heat transfer between a heated gas and porous plates and which consider the 
convective heat transfer and the radiation of the particles in the porous plates. 

A method is proposed to[obtain superadiabatic temperatures in the combustion zone during 
the burning of a low-calorie gaseous fuel in a system of two highly porous plates, due to 
the recuperation of thermal energy by the skeletons of the porous plates. 

The idea of recovering the heat by radiation in the working zone was suggested by 
Japanese scientists R. Echigo, Y. Yoshizava, et al. [i, 2]. The one-dimensional transient 
problem of burning gaseous fuel in porous material was solved [i] considering convective 
and radiative heat transfer. The combustion rate was found from the Arrhenius equation. 
The initial temperature profile of the gas was used for the initial condition. The effect 
was studied of the optical thickness, the absorption coefficient, and the position of the 
reaction zone relative to the porous layer boundaries on the maximum gas temperature. An 
original furnace design was proposed [2] for realizing a catalytic reaction, the energy 
for which was fed in by radiation through a screen transparent to radiation from the particles 
of the porous layer. The air was heated internally by combustion of an air mixture with 
a low-grade fuel. The screen is not permissible to material. 

Here we examine the method of recuperating the heat by radiation within a system of 
two highly porous plates. The low-calorie gaseous fuel (diluted natural gas, paint vapors, 
etc.) is fed through one plate into a narrow gap, where it is burned. The combustion pro- 
ducts filter through the second plate. It is proposed to utilize the method of radiative 
heat transfer to heat the porous plate, through which air is pumped to preheat it by heat 
transfer between the gas and the skeleton of the porous plate. Preheating the incoming 
gas permits temperatures above the adiabatic temperature. Only the thermal balance problem 
has been examined [2], without specifying the chemical and kinetic properties of the system. 

A stationary process is examined. The flow of gas is assumed constant. The character- 
istic dimensions of the plates are much larger than the distance between them, which makes 
it possible to neglect edge effects and examine a one-dimensional problem. The optical 
characteristics are taken to be those of a system of spheres of identical radius R i and 
emissivity ~i [3]. The gas flowing through the plates is assumed to be optically transpar- 
ent. Thermal conduction processes are neglected through the gas and between the particles 
of the porous plates. Heat transfer occurs by radiation and heat transfer with a heat trans- 
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